
LOW TEMPERATURE CO-FIRED CERAMICS

【LTCC低温共烧陶瓷多层基板 LTCC Multilayer Substrates

■ 结构图 Construction

■ 特点 Features

- ●是根据KOA公司独家的收缩控制技术和层叠技术的尺寸精度良好的多层基板。
- ●由于精细的线路、模式,可以高密度布线。
- 可以通过L.C.带状传输线内层实现小型化。
- ●由于低感电损失陶瓷和低损失导体,高频特性优良。
- ●由于接近硅的热膨胀系数,是适于装配裸片的基板。
- 通过在裸片安装部设置热观测器,可提高放热性。
- 因为陶瓷的关系, 耐热、耐湿性良好。
- ●对应欧盟RoHS。
- Excellent size accuracy, by KOA's original shrinkage control technology and multi layer technology.
- The high-density wiring by the fine line and pattern is available.
- Miniaturization is possible by burying L, C and Strip-line.
- By the uses of low dielectric-loss ceramics and low loss conductors, the substrates excel in the high frequency characteristic.
- As the thermal expansion coefficient is close to silicon's, the substrates are suitable for the bare chip mounting
- By preparing the thermal vias under bare chips, the substrates are excellent in the heat dissipation.
- The substrates are outstanding in heat resistance and humidity resistance due to the ceramics used.
- Products meet UE-RoHS requirements.

■ 收缩控制技术 Shrinkage Control Technology

LTCC在煅烧时会收缩,但通过精密控制材料、流程,实现了低于±0.05%的位置精度。

KOA公司的收缩控制技术有如下特点。

- ① 由于也能保持高度方向的精度,因而内层从动部件的特性,精度良好。
- ② 形成空腔时,可以形成稳定的空腔结构。

Although LTCC shrinks in the firing process, KOA has realized the position accuracy in $\pm 0.05\%$ or less by precisely controlling the process and the material. There are the following features in the KOA shrinkage control technology:

- ① The accuracy of the height direction is maintained, so the characteristics and accuracies of buried passive components are outstanding.
- ② When a cavity is formed, the stable one can be formed.

■ 用途 Applications

- ●使用微波、毫米波等的高频率的用途。
- ●在高温、高湿度等环境严酷的环境下也可以使用。
- 移动体通信模块。
- 裸形片多芯片模块。
- MEMS包装。
- ●转接基板
- UL1449(3rd Edition) (File No. E328032)

NVD05, NVD07: 82~470V, NVD10: 82~1100V, NVD14: 82~910V, NVD20: 200~910V

- Applications using high frequencies like micro-waves, milli-waves, etc.
- Applications used in harsh environment, especially in high temperatures, high humidities, etc.
- Small size mobile communication modules.
- Multi chip modules for bare chips.
- MEMS packages
- Interposer substrates.

■ 品名构成 Type Designation

实例 Example

预知关于此产品含有的环境负荷物质详情(除EU-RoHS以外),请与我们联系。

Contact us when you have control request for environmental hazardous material other than the substance specified by EU-RoHS.

■ LTCC是什么 What is LTCC

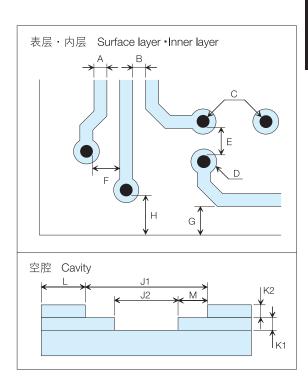
随着电子设备在高性能、轻薄短小方面的进展,在布线基板上也要求高性能。

作为对应基板高性能的技术之一,是LTCC(低温同步煅烧陶瓷)。

LTCC通过在氧化铝中加玻璃系材质,相比氧化铝在1500℃煅烧,可以在900℃以下的"低温"煅烧的陶瓷多层技术。

最大的特色是,通过低温煅烧,可以把银等低熔点材料在内部布线中使用。

With the high functioning and the advance in down-sizing of electronic equipment, wiring substrates are also required to be highly functioned. One of the technologies to respond to the high functioning of the substrates is LTCC(Low Temperature Co-fired Ceramics), which is the ceramic multilayer technology that enables the alumina to be fired at a "low temperature" of 900°C or lower by adding glass materials to the alumina while it is fired by a "high temperature" of about 1500°C.


It is the LTCC's important characteristics that low melting point materials like Ag, etc.can be used for the buried conductors for the low temperature firing.

■ 基板材料特性 Characteristics of Substrate Material

项目 Parameter	特性 Characteristics	
	Characteristics	
抗析强度(MPa)	250	
Bending strength		
热膨胀系数(×10 ⁻⁶ /K)	5.5	
Thermal expansion coefficient	0.0	
热传导率(W/m • K)	3	
Thermal conductivity		
绝缘电阻 (Ω • cm)	>1013	
Insulation resistance		
介电常数 at 1MHz	7	
Dielectric constant		
介质损耗 at 1MHz	< 0.003	
Dielectric loss		
内部导体电阻 (μΩ•cm)	Ag 2.5	
Resistivity of buried conductor		
密度 (g/cm³)		
Density	2.8	
表面光洁度 Ra(μm)	< 0.4	
Surface roughness Ra	\U.4	
耐压 (kV/mm)	\ . I =	
Withstanding voltage	>15	
层厚(μ m/Layer)	00 100 105 07D	
Layer thickness	80, 100, 125 STD.	

■ 设计规则 Design rule

= KY NEXT Design rate		
符号	↓ 项目	设计值
Symbol	Parameter	Design value
A	线路宽度	0.06mm Min.
	Line width	
В	线路间空间	0.06mm Min.
	Line to line spacing	
С	通路直径	0.1mm, 0.15mm, 0.2mm
	Via diameter	
D	通路充填直径	Via diameter+0.05mm Min.
	Via pad diameter	
E	通路间隔	0.2mm Min.
	Via to via spacing	
F	通路-线路间隔	0.15mm Min.
	Via to line spacing	
G	模型层通路充填直径	0.2mm Min.
	Part edge to conductor spacing	
Н	基板端模型间隔	0.3mm Min.
	Part edge to Via spacing	
J1, J2	空腔宽度	0.6mm Min.
	Cavity width	
K1, K2	空腔深度	0.1mm Min.
	Cavity depth	
L	空腔壁面厚度	0.5mm Min.
	Wall thickness of cavity	
М	空腔内隔板宽度	0.5mm Min.
	Shelf width in the cavity	U.ƏHIIN MIN.

